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_Abstract—in this paper, we report on a design method for nonuniform microstrip line with continuously varying strip
chirped delay lines (CDLs) in microstrip technology. They consist width following a linearly frequency-modulated (chirped) con-
in a continuously varying strip width, so that the coupling location tinuous periodic function. Then, the phase-matching condition

between the quasi-TEM microstrip mode and the same but . . . .
counter-propagating mode is linearly distributed in frequency. for resonant Bragg coupling between the quasi-TEM microstrip

High delay x bandwidth products, over frequency ranges of Mode and the same but counter-propagating mode is ideally
several gigahertzs, can be obtained following this procedure. satisfied at only one position for each spectral frequency, from

Experimental data confirm the design method. Real-time Fourier which it will be back-reflected. In fact, if the perturbation is
analysis of wideband pulses can be performed using these CDLs. linearly chirped then we will see that the mode-coupling loca-
Index Terms—Chirped Bragg coupling, chirped delay line, tion varies linearly in frequency and, as result, the reflection
impedance modulation, microstrip technology, quadratic-phase time is also a linear function of frequency.
fiiter. ConsiderZ,(z) as the perturbed microstrip impedance given
by Zo(#2) = fey(2), where((») represents the modulation
|. INTRODUCTION of the local spatial angular frequency of a continuous periodic
. . . _._function f(z), andz is the axis along which the microstrip CDL
CHIRPED delay line (CDL) is a quadratic-phase ﬂltefS extendéd)fromz — _I/2t0z = L2, beingL the device
whose frtcajquencyt rels?onsfé(w) - Aoéw) ! (teXp(—dy b total length. We will show next that f(z) = (o +2-C - z, then
wo(w)), around a central frequenayo, is characterized by Zy(z) yields a mode-coupling location linearly distributed in

uniform insertion lossesdo(w), _and a linear group-d_elay,s ectral frequency. The parametefm—?) fixes the variation
o = dyg/dw, across the operating frequency-band. leferer;j te of the local spatial frequency adgl = ¢(= = 0) is the

approachets h?ve been fqllowed t_o prodluceSCDLs, fTﬁmly PHue of the local spatial frequency at the device central point.
components of compressive receivers [1]. Some of them arerpe Bragg condition states that the perturbation period for an

not simple to fabricate, while other ones do not meet easi&(1 .
. AT . ular frequency to be coupled to the counter-propagatin
the design specifications. In this paper, we report on a pl no q Y b propagating

desi thod for CDLSs in microstrio i ith cont | uasi-TEM mode in a microstrip line can be estimated g&
esign method tor S IN MICTOSINP NS WIt CONUNUOUSIY. - 4 phase-shift), being, the guided wavelength at this fre-
varying strip width to achieve closely the required frequenc

. ) uency in the unperturbed (constant strip width) microstrip line
features, that is, the desired frequency range, delay ver y P ( P ) P

frequency slope, and input/output impedance, and benefitifg| Then, in the quasistatic (TEM) approximation, the angular
L ' - locally refl 2), is f
from fabrication on a mature technology and compatibility quency locally reflected at w(z), is found as

with monolithic circuits. This way, CDLs with very high _(x)e ¢ 27 00
time-bandwidth products (defined as the total delay excursio“r’f(z) T o, Ecft| 500 9. Ecft| 500 \ao bz ) oz
times the bandwidth), over ranges of several gigahertz, can 7 7 1)

be obtained on high-dielectric-constant- and thin substrates.
Promising applications as the real-time spectral analysis ibfan impedance modulation around 50 is considered.
wideband signals can be envisaged using these devices.  =z.g|50 o is the effective dielectric constant for a %@-line
at low-frequency regimeg is the speed of light in vacuum,
II. MICROSTRIPCDL DESIGN andao, = 2n/(, is the local spatial period at = 0, which
ixes the central operation frequency,. Equation (1) an-

L . - f
Let the characteristic impedance of a microstrip line bt?cipates that a linear spatial frequency modulation of the

changed by a continuously changing profile, for exampleiﬁ'npedance provides a linear group delay in a bandwdsith=

iz = L/2) —wi(z = —L/2)] = ¢-|C|-L/\/eels0 2
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the local spatial frequencyy, in f..,(z) have been fixed, 0 8
we can straightforwardly test these design relationships by L7
obtaining the loss-less behavior of the CDL, which provides -5 6
valid information on the approximated operation frequency o)
range and delay characteristic, by means of 107 5 9
g 15 : -g’
_— (1]
dSn/dz—2~’y~Sll+%~(1—5121)~d(1n(Z0))/dz:0 2 - 3 &
-20 23
derived from the differential equations for voltagé, and cur- Ly
rent,/, in a transmission line model [3], and solvisg; for the -25 o
input port,z = —L/2, beingS11 = (V/I — Zy)/(V/I + Zy)
T T T T T T T T T '1

the reflection coefficient and taking a purely imaginary propa-  -30 +———— T
gation constany = j -3 = j-w-+/zea/c (g depends only on 2 3 45 6 7 8 9101112131415

the strip width, for a given substrate, in the quasistatic approx: Frequency (GHz)

imation). Eq. (2) can readily be integrated numerically, taking

into account that at the endpoint the reflection coefficientis supy 1. s, ,-parameter of the microstrip CDL (magnitude, left axis; and group

posed to be zero due to perfect matching. delay, right axis) obtained by loss-less quasistatic approximation (dotted line),
The functionf (=) is chosen to minimize the frequency interfommercial software (thin solid line), and measurement (thick solid line).

ference of the spurious reflected bands, at the harmonicg,of

on the main band since low-rippled response is a requiremenfj. N UMERICAL AND EXPERIMENTAL RESULTS DISCUSSION

fora CDL. If f(z) = 50 - exp(sin(27 - z/ag)) for a nonchirped

impedance modulation (i.eZo(z) = f(z)) around S0 with |y this section, we present an example of microstrip CDL

a spatial periodicityi, thens, (w, » = —L/2) can be analyti- yith linearly chirped impedance modulation around50sing

call_y shownZ using (2), to be a single-frequency-tuned response,adium qualityRogers (tm) RO3016ubstrated, = 10.2,

mainly confined in the nearness of the central frequensy anq thickness: = 1.27 mm). The design frequency charac-

provided thatl, > aq for high time-bandwidth products. Any yeistics are: operation around 9 GHz, 12 GHz-bandwidth, and

other election of the periodic functiofy =) would have led to —0.5 nsIGHz(@o = —0.08 ns'/ rad)-delay slope. The next pa-

frequency responses with reflected bands ay, 3 - wo,- .-, rameter set fulfills the responsg; = 6.4 mm, L = 50 - o, and

although, if f(=) is continuous and smooth, these replicas _— _ 9950 m=2. The asymmetric tapering functiai (z) is

would be likely constrained to reduced levels [4]. Therefor%aussiarW(z) = exp(—4 - ((z — L/4)/L)?), andA = 0.4.

the impedance modulation finally implemented is Once all the parameters in (3) have been fixed, we imple-

ment the impedance variation as a strip width modulation (see

Zo(z) = 50 - exp <A -W(z) - sin </ ¢(z) - dz)) [5], for instance). As the impedance varies between 35 and 75
2, the strip width changes between 0.5 and 2.5 mm approxi-

=50 - exp(A - W(z) -sin(2n/ag - 2 mately. In Fig. 1, the5;; parameter obtained by (2) in a lossless
+C-22—C-L*/4)) (3) and quasistatic approximation (dotted line) is compared with

the simulation employing the commercial software (thin solid
where A (nondimensional) is an amplitude factor and the irline) and the measurement of the prototype (thick solid line),
tegration constant is fixed te-C - L?/4 for 50 Q-input and showing thatthe CDL provides the required features of flat mag-
output ports wherd. is a multiple ofa, - W (%) is a windowing nitude and linear group delay. The reflection losses are main-
function for smoother input and output impedance transitiofi@ined around-3 dB over the entire bandwidth (dielectric loss
to avoid partially reflections from the extremes of the strudangenttané = 0.0026, and metal conductivity = 5.8 - 107
ture that give rise to different long-path Fabry—Perot like re§/m). We decided to use an appropriate time-gating to subtract
onances, which cause undesirable rapid ripple to appear arothiél mismatch effects of the connectors in the presented mea-
the mean values in the magnitude and group-delay versus fsgrement because these effects are critical in broadband opera-
quency patterns degrading the CDL performance. Furthermdiien and, in the intended integrated solution, the input and output
both negative values @, which imply upper (higher loss) fre- sections will be also microstrip lines.
quencies to be reflected in first place, and asymméffic:), Fig. 2 shows the average internal power distribution, as rela-
which compensates for the longer lossy round trips of lowé&ve brightness levels, for every frequency in the operation band-
frequencies (conductor losses, \/w, are much more signifi- width as a function of the position in the CDLAY(2)|? +
cant than dielectric lossesyw, for most microstrip substrates),|A~(z)|?, beingA* the complex amplitudes of the quasi-TEM
can be proved to lead to better equalized reflection losses acnoexle traveling in the forwar(h-) and backward —) z-direc-
the operation band if full-wave electromagnetic simulations aten. These values verify that~ /AT = S;;, and they are
performed (in our case using the commercially avail#tggent related to the voltage and current along the transmission-line
(tm) Momentunsoftware). Parasitic effects in microstrip-likemodel [3], [6]. A coupling-location linearly distributed in fre-
radiation losses and surface-wave propagation are maintaig@ency is clearly observed as well as higher frequencies being
within negligible values due to the smooth rounded strip shapeflected back earlier than lower ones (negatit)e
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A 0.6 ns-wide (dotted line), placed within the CDL bandwidth, to-
%MNWWU'LWM gether with the output pulse reflected from the CDL (solid line),

|MWWMHWM calculated through a numerical simulation using the measured
2l frequency response, both as normalized average power signals
(then, only the envelopes of both microwave pulses, traveling
on a carrier frequency at 8 GHz, are depicted). The normal-
ized input and output energy spectral densities are the dotted
and solid lines, respectively, at the upper left plot. The larger
plot of Fig. 3 is a joint time-frequency representation of the en-
ergy distributions for both signals providing information of the
temporal location of the spectral components. A Wigner-Ville
distribution [8] was used in this case. A strong process of linear
realignment in time is suffered by the input signal frequencies
i 3 and, under the assumption of a high delay slope in the signal
- p. - - bandwidth, which is the case for these microstrip CDLS, a single
b e 0 EaRzn e s d E 03 LR R E g0 minant frequency exists at a given instant of time. This wa
q y g Y,

Delny () Fasiian (o)
B the output closely reproduces the shape of the energy spectral
rris m density,sin®(z) /22, of the input signal on a time axis related
, _ _ o to frequency by a linear axis-change given by the CDL delay
Fig. 2. Average internal power as a function of frequency and position in t ef
CDL using the transmission-line model. Top: CDL strip pattern (not to scal lope.
Left: group-delay.
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IV. CONCLUSION
mn MEY

B We have reported on an easy procedure to design microstrip
CDLs with high time-bandwidth products, over frequency
ranges of several gigahertzs, consisting in a continuously

iz varying strip width so that the coupling location between the

! qguasi-TEM microstrip mode and the same but counter-propa-

_f 'J'"i;:‘;: gating mode is linearly distributed in frequency. Measurements

A ‘;,:;;ﬂ. ‘x have been provided verifying the design method. Fourier

processing of wideband signals has been pointed out as a
possible application for these devices.
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